Sensitivity of Rabbit Ventricular Action Potential and Ca2+ Dynamics to Small Variations in Membrane Currents and Ion Diffusion Coefficients
نویسندگان
چکیده
Little is known about how small variations in ionic currents and Ca²⁺ and Na⁺ diffusion coefficients impact action potential and Ca²⁺ dynamics in rabbit ventricular myocytes. We applied sensitivity analysis to quantify the sensitivity of Shannon et al. model (Biophys. J., 2004) to 5%-10% changes in currents conductance, channels distribution, and ion diffusion in rabbit ventricular cells. We found that action potential duration and Ca²⁺ peaks are highly sensitive to 10% increase in L-type Ca²⁺ current; moderately influenced by 10% increase in Na⁺-Ca²⁺ exchanger, Na⁺-K⁺ pump, rapid delayed and slow transient outward K⁺ currents, and Cl⁻ background current; insensitive to 10% increases in all other ionic currents and sarcoplasmic reticulum Ca²⁺ fluxes. Cell electrical activity is strongly affected by 5% shift of L-type Ca²⁺ channels and Na⁺-Ca²⁺ exchanger in between junctional and submembrane spaces while Ca²⁺-activated Cl⁻-channel redistribution has the modest effect. Small changes in submembrane and cytosolic diffusion coefficients for Ca²⁺, but not in Na⁺ transfer, may alter notably myocyte contraction. Our studies highlight the need for more precise measurements and further extending and testing of the Shannon et al. model. Our results demonstrate usefulness of sensitivity analysis to identify specific knowledge gaps and controversies related to ventricular cell electrophysiology and Ca²⁺ signaling.
منابع مشابه
The effect of lead (Pb2+) on electrophysiological properties of calcium currents in F77 neuron in Helix aspersa
Ion channels are responsible for control of cell function in excitable tissues such as heart and brain and also in organs and tissues traditionally thought to be non- excitable including liver and epithelium. In the present research, the effect of lead (Pb2+) on Ca2+ -dependent action potential and currents was studied in F77 neuronal soma membrane of Helix aspersa. For this purpose, action pot...
متن کاملEffects of ionic parameters on behavior of a skeletal muscle fiber model
All living cells have a membrane which separates inside the cell from it's outside. There is a potential difference between inside and outside of the cell. This potential difference will change during an action potential. It is quite common to peruse action potentials of skeletal muscle fibers with the Hodgkin-Huxley model. Since Hodgkin and Huxley summarized some controlling currents like inwa...
متن کاملComputer model of action potential of mouse ventricular myocytes.
We have developed a mathematical model of the mouse ventricular myocyte action potential (AP) from voltage-clamp data of the underlying currents and Ca2+ transients. Wherever possible, we used Markov models to represent the molecular structure and function of ion channels. The model includes detailed intracellular Ca2+ dynamics, with simulations of localized events such as sarcoplasmic Ca2+ rel...
متن کاملAlterations in electrical activity and membrane currents induced by intracellular oxygen-derived free radical stress in guinea pig ventricular myocytes.
Oxygen-derived free radicals (O-Rs) are thought to induce alterations in cardiac electrical activity; however, the underlying membrane ionic currents affected by O-Rs and the mechanisms by which O-Rs induce their effects on ion channels in the heart are not well defined. In this study, we investigated the time-dependent changes in resting membrane potential and action potential configuration an...
متن کاملAn ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes.
AIMS To develop an ionic model of stretch-activated and stretch-modulated currents in rabbit ventricular myocytes consistent with experimental observations, that can be used to investigate the role of these currents in intact myocardium. METHODS AND RESULTS A non-specific cation-selective stretch-activated current I(ns), was incorporated into the Puglisi-Bers ionic model of epicardial, endoca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013